
Idea: Better gradient steps for deep on-policy
reinforcement learning

Ryan Pégoud
EPF Engineering school

Montpellier, France
ryan.pegoud@epfedu.fr

Thibault Lahire
Dassault Aviation

Saint Cloud, France
thibault.lahire@dassault-aviation.com

Abstract

In deep on-policy reinforcement learning, algorithms collect transitions by execut-
ing the current policy in the environment. These transitions are then used during
a gradient ascent step, aiming at updating the neural network(s) parameter. This
article studies how the collected transitions can be prioritized to speed up the gra-
dient ascent process toward a favorable policy. To do so, we weigh the transitions
in the update gradient ascent equation with their per-sample gradient norms, which
is a measure of the margin of change which can occur in the neural network.

1 Introduction

In deep Reinforcement Learning (Sutton and Barto, 2018, RL), neural network policies and value
functions can be learnt thanks to gradient descent algorithms on transitions collected by interacting
with the environment. This is particularly the case for model-free, policy-based algorithms, such as
REINFORCE (Williams, 1992), TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017).
These algorithms execute the current policy on the environment, collect trajectories, and update
their neural network(s) with one gradient step thanks to the backpropagation of the statistics of
the trajectories. As the collected trajectories are replaced each learning step by new ones, the RL
algorithms mentioned before boil down to a sequence of supervised learning problems. Even though
each supervised learning problem is not fully solved (as only one gradient step is taken), one would
like to take better gradient steps each time learning is performed, as this implies a faster convergence.

The policy gradient theorem suggests gathering experiences by executing the current policy in the
environment, and updating the policy network through backpropagation of each experience (Sutton
et al., 1999). Each experience has equal importance in the gradient step. However, at a given time of
the training, one experience could benefit more than another to the learning process. Indeed, some
parts of the interactions with the environment might be well-handled by the neural network policy,
whereas it is taking sub-optimal actions in some (less encountered) states. In model-free, value-based
algorithms, such as Deep Q-Networks (Mnih et al., 2015, DQN), Prioritized Experience Replay
(Schaul et al., 2016, PER) samples mini-batches thanks to a temporal difference error (TD error)
associated to each collected experience in the replay buffer. This can be cast as importance sampling
(Rubinstein and Kroese, 2016) and has brought a speed-up in convergence compared to vanilla DQN,

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).
This work highlights some mathematical issues at stake in deep reinforcement learning and is to be pursued in
the AI illustrations carried out in the EDF∗-2021-101103669-EICACS (European Initiative Collaborative Air
Combat Standardisation) project.

This publication was co-funded by the European Union. Its contents are the sole responsibility of the
author and do not necessarily reflect the views of the European Union or the European Commission. Neither the
European Union nor the granting authority can be held responsible for them.
* EDF stands for European Defence Fund.

since sampling experiences with high TD error has been shown to reduce variance of the stochastic
gradient estimate (Lahire et al., 2022).

To the best of our knowledge, PER remains a method associated to the existence of a replay buffer,
which complicates its use in policy-based algorithms, such as REINFORCE or PPO. Moreover,
contrarily to DQN, where a mini-batch is sampled from the replay buffer, the collected experiences
in policy-based methods are all used for backpropagation, and no sampling is performed. In this
work, we propose a connection between importance sampling schemes, as can be found in PER, and
policy-based algorithms which are not depending on a replay buffer.

In particular, we weigh the collected experiences in policy-based algorithms, so that the gradient
used for the update has less variance. This allows a better use of the trajectories: the parts on which
the neural network has the most to learn drive preferentially the optimization. Our method has a
computational cost equivalent to that of the base algorithm it is implemented on. In this work, we take
REINFORCE as base algorithm to derive the theory for pedagogical purposes, since it is the simplest
policy-based method. Our goal for future works will be to explain how the theory applies to elaborated
algorithms such as TRPO and PPO. The experiments assessing our theory remains to be done.

Hence, this work has to be seen as an idea paper only, and is structured as follows. Section 2
introduces the main concepts in deep, policy-based, reinforcement learning on which we will present
our contributions. Section 3 covers related work in prioritization for RL and importance sampling of
training sets. Then section 4 grounds theoretically how some experiences can improve the learning
process, and introduces how we can make the best use of these experiences. Section 5 discusses
experiments which remains to be done and concludes.

2 Background

In the standard RL framework, one searches for the optimal control policy when interacting with a
discrete-time system behaving as a Markov Decision Process (Puterman, 2014). At time step t, the
system is in state st ∈ S, and upon applying action at ∈ A, it transitions to a new state st+1, while
receiving reward rt. Starting from an initial state (or from a probability distribution over initial states),
this process (also called episode) stops when a terminal condition is met. For pedagogical reason,
we assume in this work that the episodes stop after H interactions with the environment. A policy
π is a function mapping states to distributions over actions. In deep, model-free and policy-based
RL, the policy is a neural network parameterized by θ. Its performance can be assessed through the
function J(θ) = E[R|πθ] where R =

∑H−1
t=0 rt is the return. The goal of RL is to find the parameter

θ∗ associated with the policy having the largest possible J .

Note that we intentionally omitted the discount factor γ, which can be found in most RL research
articles, to simplify our explanations. Although this is legitimized by the fact that the episode ends
after H interactions, ensuring that the sum of reward is finite, our work also applies to the case of an
infinite horizon, provided we replace R by the discounted return R =

∑H−1
t=0 γtrt, with the discount

factor γ ∈]0; 1[. Note also that we used the shortcut equation J(θ) = E[R|πθ] to express that the
expectation E depends on the interactions with the environment through πθ.

The gradient of J with respect to θ can be written ∇θJ(θ) = E [R∇θ log πθt(at|st)|πθ] where
at is the action sampled by the policy at time t. Starting from a random initial parameter θ0, the
REINFORCE algorithm builds a sequence (θm)m≥0 of parameters by performing gradient steps in
the direction maximizing the function J . In theory, the update equation is θm+1 = θm + η∇θJ(θm),
with η a learning rate. However, this cannot be done in practice, as computing ∇θJ(θm) is often
computationally intractable. In practice, the expectation behind ∇θJ(θm) is approximated with
a mean estimator (also called Monte-Carlo estimator), which consists in drawing K trajectories
executed with policy πθm . The update equation used in practice is:

θm+1 = θm + η
1

K

K∑
k=1

H−1∑
t=0

R(k)∇θ log πθm(a
(k)
t |s(k)t)

where s
(k)
t , a(k)t and R(k) are respectively the state, the selected action at time t, and the sum of

collected rewards within trajectory k. The collected trajectories can be considered a dataset of
size N = KH composed of transition tuples

{
(s

(k)
t , a

(k)
t , R(k)), 1 ≤ k ≤ K, 0 ≤ t ≤ H − 1

}
. Re-

2

indexing the dataset with i ∈ [1;N],it yields the dataset {(si, ai, Ri), 1 ≤ i ≤ N}, and the gradient
step can be written:

θt+1 = θt − η
1

N

N∑
i=1

(−Ri)∇θ log πθt(ai|si). (1)

This form is reminiscent of the minimization of an empirical risk in supervised learning, where
the per-sample loss would be equal to (−Ri) log πθt(ai|si). The objective would be to find
θ∗ ∈ argminθ

1
N

∑N
i=1(−Ri)∇θ log πθt(ai|si) by gradient descent. However, contrarily to risk

minimization in supervised learning, policy gradient methods such as REINFORCE only take a single
gradient descent step before collecting a new dataset. In this work, we show that the collected dataset
at each learning step can be used in a more relevant way, without adding any computational cost. Our
contribution focuses on lowering the variance of the gradient estimate to perform better gradient steps.

3 Related work

Our work focuses on reweighing the per-sample gradients according to a prioritization metric. We
consider the collected transitions as a dataset over which stochastic gradient descent (Robbins
and Monro, 1951, SGD) is performed to take a step towards the optimum θ∗ this dataset defines.
According to the theory behind SGD, a small subset of items is uniformly drawn with replacement
from the dataset to compute per-sample gradients and apply the update. However, the uniform
distribution has shown not to be the most effective distribution to converge fast towards the optimum
(Needell et al., 2014; Wang et al., 2017). The most effective distribution, proportional to the per-
sample gradient norm of the losses, requires to be computed over the all dataset, which makes it
practically intractable.

This has led to a whole research field, where tractable approximations of the most effective sampling
scheme have been proposed. For instance, Loshchilov and Hutter (2016) proposed a sampling
proportional to a loss ranking. Katharopoulos and Fleuret (2018) proposed an upper-bound on the
per-sample gradient norm which is fast to compute and can be used as a surrogate of the optimal
sampling scheme. Alain et al. (2016) deploy heavy computational resources, using clusters of GPUs,
to be as close as possible to the optimal sampling scheme.

In RL, the well-known Priotized Experience Replay (Schaul et al., 2016, PER) has been introduced
for the DQN algorithm as a heuristic accelerating the learning process, drawing inspiration from
Prioritized Sweeping (Moore and Atkeson, 1993). Each transition in the replay buffer is assigned
a priority that is proportional to the temporal difference (TD) error, and gradients are estimated by
sampling according to these priorities. Later, PER was combined with other DQN improvements,
including distributional RL (Bellemare et al., 2017; Hessel et al., 2018), as well as applied to
actor-critic methods (Wang and Ross, 2019).

Other methods to select a mini-batch have been proposed. To emphasize recent experience and
draw a mini-batch of size B, Zhang and Sutton (2017) sample uniformly B − 1 transitions from the
replay buffer and add the last experience tuple collected along the trajectory. Similarly, Wang and
Ross (2019) have observed a faster convergence of the soft actor-critic algorithm (Haarnoja et al.,
2018, SAC) by sampling more frequently the recent experiences collected, which can be seen as a
smooth version of the sampling proposed by Zhang and Sutton (2017). However, to the best of our
knowledge, our work is the first attempt at reweighing the transitions in the gradient descent update
step in deep, policy-base, reinforcement learning.

In this work, we re-use the theory developed in the supervised learning literature, showing the most
effective sampling scheme is the one proportional to the per-sample gradient norms. We recall it at
the beginning of the next section, and we then move to our contribution, based on the fact that all
per-sample gradients are computed in deep, policy-based, RL algorithms. Instead of sampling the
collected dataset, either with a uniform or a more effective sampling, one could simply weigh the
collected items according to the per-sample gradient norms (that are computed anyway), and obtain
the speed-up theoretically grounded in the supervised learning literature.

3

4 Contribution

Let u be the uniform discrete distribution over the transitions in the dataset constituted of the collected
trajectories, such that ∀i ∈ [1;N], ui = 1/N . The gradient can be written as an expectation over the
transitions (or experiences):

1

N

N∑
i=1

(−Ri)∇θ log πθt(ai|si) =
N∑
i=1

ui(−Ri)∇θ log πθt(ai|si) = Ei∼u[(−Ri)∇θ log πθt(ai|si)].

Let p be any probability distribution over the transitions of the dataset such that pi ̸= 0,∀i. Importance
sampling can be used to express the expectation with respect to the distribution p:

Ei∼u [Ri∇θ log πθt(ai|si)] = Ei∼p

[
Ri∇θ log πθt(ai|si)

ui

pi

]
=

1

N
Ei∼p

[
Ri

pi
∇θ log πθt(ai|si)

]
We introduce G

(m)
i = −Ri

Npi
∇θ log πθm(ai|si) for any sampling scheme p such that pi > 0, ∀i ∈

[1;N]. Setting η as a constant learning rate, a gradient descent update has the form: θm+1 =

θm − ηEi∼p[G
(m)
i]. This can be surprising at first sight since it seems to depend on p, but it is not

the case. Indeed: Ei∼p[G
(m)
i] =

∑N
i=1 piG

(m)
i = 1

N

∑N
i=1 −Ri∇θ log πθm(ai|si), and this notation

gives consistency with the gradient descent equation 1.

Adapting the ideas of Katharopoulos and Fleuret (2018) and Wang et al. (2017) to our setting,
we define the convergence speed S of gradient descent under a sampling scheme p as S(p) =

−Ei∼p

[
∥θm+1 − θ∗∥22 − ∥θm − θ∗∥22

]
. Using θm+1 = θm − ηG

(m)
i , the convergence speed can be

written: S(p) = 2η(θm − θ∗)TEi∼p[G
(m)
i] − η2Ei∼p[G

(m)
i

T
G

(m)
i]. This derivation can be found

in Appendix A. Our goal is to find p that maximizes the convergence speed, which is equivalent to

minimizing Ei∼p[G
(m)
i

T
G

(m)
i]. This minimization is a constrained optimization problem:

min
p

Ei∼p[G
(m)
i

T
G

(m)
i] = min

p

N∑
i=1

pi∥G(m)
i ∥22 such that

N∑
i=1

pi = 1 and ∀i ∈ [1, N], pi > 0.

The optimal sampling is pGN
i = ∥Ri∇θ log πθm(si|ai)∥2/

∑N
j=1 ∥Rj∇θ log πθm(sj |aj)∥2, it is the

weighing proportional to the per-sample gradient norms (hence the superscript GN). The proof is
reported in Appendix A.

As a consequence, instead of performing a standard gradient descent step as proposed in Equation 1,
this work proposes to study a different gradient step, namely:

θm+1 = θm − η
1

N

N∑
i=1

−Ri

NpGN
i

∇θ log πθm(ai|si) (2)

This update equation weighs each item of the collected trajectories according to its potential of
change in the neural network parameter. The higher the per-sample gradient norm associated to one
transition, the most changes in the neural network parameter this transition produces.

5 Future work

This article is a work-in-progress, and focuses on deep, policy-based, reinforcement learning. It
proposes an update equation for the neural network, which is different from the one usually performed
in such framework. This new update equation gives more importance to transitions yielding a higher
change in the neural network parameter, and is theoretically backed by the literature on importance
sampling applied to supervised learning.

For pedagogical purposes, we restricted our study to the simplest form of deep, policy-based,
reinforcement learning, namely the REINFORCE algorithm. We plan to extend our research to more
used in practice (and complex) algorithms, such as TRPO and PPO. Weighing collected transitions
in these algorithms will require adaptations to the base case we presented. Indeed, the loss of PPO
is made of three terms, hence the per-sample gradient norms will have to be properly defined to

4

design an efficient algorithm. Hence, we believe this work-in-progress will benefit from the ARLET
workshop in identifying potential shortcomings which can happen when the theory is applied to
in-production algorithms such as PPO.

Finally, no experiment has been run yet to test the presented ideas. We plan to run experiments in
environments with discrete and continuous action spaces to provide a diversity of control tasks. Once
again, attending the ARLET workshop will give us insights on how to conduct statistically relevant
experiments, and to identify a class of environments on which our reweighing scheme particularly
works well.

6 Aknowledgements

This publication was co-funded by the European Union. Its contents are the sole responsibility of the
author and do not necessarily reflect the views of the European Union or the European Commission.
Neither the European Union nor the granting authority can be held responsible for them.

5

References
Alain, G., Lamb, A., Sankar, C., Courville, A., and Bengio, Y. (2016). Variance reduction in sgd by

distributed importance sampling. In International Conference on Learning Representations.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449–458. PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on
Machine Learning, pages 1861–1870.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot,
B., Azar, M., and Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement
learning. In Thirty-Second AAAI Conference on Artificial Intelligence.

Katharopoulos, A. and Fleuret, F. (2018). Not all samples are created equal: Deep learning with
importance sampling. In International Conference on Machine Learning, pages 2525–2534.

Lahire, T., Geist, M., and Rachelson, E. (2022). Large batch experience replay. In International
Conference on Machine Learning, pages 11790–11813. PMLR.

Loshchilov, I. and Hutter, F. (2016). Online batch selection for faster training of neural networks. In
International Conference on Learning Representations.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540):529–533.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less
data and less time. Machine learning, 13(1):103–130.

Needell, D., Ward, R., and Srebro, N. (2014). Stochastic gradient descent, weighted sampling, and
the randomized kaczmarz algorithm. In Advances in neural information processing systems, pages
1017–1025.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons.

Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of mathematical
statistics, pages 400–407.

Rubinstein, R. Y. and Kroese, D. P. (2016). Simulation and the Monte Carlo method. John Wiley &
Sons.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience replay. In ICLR
(Poster).

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy optimiza-
tion. In International conference on machine learning, pages 1889–1897. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing
systems, 12.

Wang, C. and Ross, K. (2019). Boosting soft actor-critic: Emphasizing recent experience without
forgetting the past. arXiv preprint arXiv:1906.04009.

Wang, L., Yang, Y., Min, R., and Chakradhar, S. (2017). Accelerating deep neural network training
with inconsistent stochastic gradient descent. Neural Networks, 93:219–229.

6

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8:229–256.

Zhang, S. and Sutton, R. S. (2017). A deeper look at experience replay. In NeurIPS 2017 Deep
Reinforcement Learning Symposium.

A Appendix

This appendix is dedicated to the derivation of the optimal sampling scheme, the one with the fastest
convergence speed. In the main paper, we reuse this result, but we intentionally omit the sampling
part, and instead use the result as a reweighing. We define the convergence speed S for a sampling
scheme p as S(p) = −Ei∼p

[
∥θm+1 − θ∗∥22 − ∥θm − θ∗∥22

]
. We recall that a stochastic gradient

descent update has the form θm+1 = θm − ηG
(m)
i , see Section 4 for more details. The following

derivations from (Wang et al., 2017) help us rewrite the convergence speed:

S(p) = −Ei∼p

[
∥θm+1 − θ∗∥22 − ∥θm − θ∗∥22

]
= −Ei∼p

[
θTm+1θm+1 − 2θTm+1θ

∗ − θTmθm + 2θTmθ∗
]

= −Ei∼p

[
(θm − ηG

(m)
i)T (θm − ηG

(m)
i) + 2ηG

(m)
i

T
θ∗ − θTmθm

]
= −Ei∼p

[
−2η(θm − θ∗)TG

(m)
i + η2G

(m)
i

T
G

(m)
i

]
= 2η(θm − θ∗)TEi∼p[G

(m)
i]− η2Ei∼p[G

(m)
i

T
G

(m)
i]

It is possible to gain a speed-up by sampling from the distribution that minimizes Ei∼p[G
(m)
i

T
G

(m)
i].

This yields the constrained optimization problem:

min
p

Ei∼p[G
(m)
i

T
G

(m)
i] = min

p

N∑
i=1

pi∥G(m)
i ∥22 such that

N∑
i=1

pi = 1 and pi ≥ 0

Recall that G(m)
i = −Ri

Npi
∇θ log πθm(ai|si). Let gi = ∥Ri∇θ log πθm(ai|si)∥2. The problem boils

down to:

min
p

1

N2

N∑
i=1

1

pi
g2i , such that

N∑
i=1

pi = 1 and pi ≥ 0.

Lemma Optimal sampling distribution

The optimal sampling distribution pGN verifies pGN
i ∝ ∥Ri∇θ log πθm(ai|si)∥2, the per-sample

gradient norm.

Proof

We note µ ∈ R the Lagrange multiplier associated to the equality constraint, ν ∈ RN
+ the Lagrange

multipliers associated to the inequality constraints. Hence:

Lag(p, µ, ν) =
N∑
i=1

1

pi
g2i + µ

(
N∑
i=1

pi − 1

)
−

N∑
i=1

νipi

Setting the derivatives of the Lagrangian with respect to the primal variables yields:

∀ i ∈ [1, N], −g2i
p2i

+ µ− νi = 0

Multiplying the above equation by pi and using ∀ i, piνi = 0 (complementary slackness), we have:
pi = gi/

√
µ, which yields the result.

7

	Introduction
	Background
	Related work
	Contribution
	Future work
	Aknowledgements
	Appendix

